Soft Collinear Effective Theory

Sean Fleming
University of Arizona

Outline

- Soft Collinear Effective Theory: Overview of Formalism
 - Structure of theory
 - Factorization
- Applications
 - lacksquare Color-suppressed $B o D\pi$ decays
 - Radiative Upsilon decays
 - \bullet $B \to \pi + \ell \bar{\nu}$
- Conclusion

Soft Collinear Effective Theory: Overview

Soft-Collinear Effective Theory: Overview 04/31

Bauer, Fleming, Luke, Pirjol, Stewart

 SCET: Effective theory of highly energetic, approximately massless particles interacting with a soft background

$$p^{\mu} = Qn^{\mu} + k^{\mu}$$
Brown Muck

Energetic:
$$Q \gg \Lambda_{\rm QCD}$$

Light-like:
$$n^{\mu} = (1, 0, 0, 1)$$

Residual

Momentum: $k \sim \Lambda_{\rm QCD}$

Expansion in: $\lambda \sim \Lambda_{\rm QCD}/Q$

 HQET: Effective theory of very massive particle interacting with a soft background

$$p^{\mu} = Mv^{\mu} + k^{\mu}$$

$$b$$

Heavy: $M \gg \Lambda_{\rm QCD}$

Static: $v^{\mu} = (1, 0, 0, 0)$

Residual

Momentum: $k \sim \Lambda_{\rm QCD}$

Expansion in: Λ_{QCD}/M

Example

Pion has:
$$p_{\pi}^{\mu} = (2.3 \,\text{GeV}) n^{\mu} = Q \, n^{\mu}$$

$$n^2 = \bar{n}^2 = 0, \ (\bar{n} \cdot p = p^-)$$

Soft constituents:

$$p_s^{\mu} = (p^+, p^-, p^{\perp}) \sim (\Lambda, \Lambda, \Lambda)$$

Collinear constituents:

$$p_c^{\mu} = (p^+, p^-, p^{\perp}) \sim \left(\frac{\Lambda^2}{Q}, Q, \Lambda\right) \sim Q(\lambda^2, 1, \lambda)$$
 $\lambda = \frac{\Lambda}{Q}$

Degrees of freedom in SCET

Introduce fields for infrared degrees of freedom (in operators)

modes	$p^{\mu} = (+, -, \bot)$	p^2	fields
collinear	$Q(\lambda^2, 1, \lambda)$	$Q^2\lambda^2$	ξ_n,A_n^μ
soft	$Q(\lambda,\lambda,\lambda)$	$Q^2\lambda^2$	q_s,A_s^μ
usoft	$Q(\lambda^2, \lambda^2, \lambda^2)$	$Q^2\lambda^4$	q_{us},A^{μ}_{us}

Energetic jets

$$\Lambda^2 \ll Q\Lambda \ll Q^2$$

usoft
$$p^{\mu} \sim \Lambda$$
 collinear $p_c^2 \sim Q\Lambda$, $\lambda = \sqrt{\Lambda/Q}$

Energetic hadrons

soft
$$p^{\mu} \sim \Lambda$$
 collinear $p_c^2 \sim \Lambda^2$, $\lambda = \Lambda/Q$

Soft-Collinear Effective Theory: Overview 07/31

HQET

Not Allowed!!!

Analogy with HQET breaks down:

SCET

O.K.

$$p^{\mu}=rac{1}{2}Qn^{\mu}$$
 $p'^{\mu}=rac{1}{2}zQn^{\mu}$ $q^{\mu}=rac{1}{2}(1-z)Qn^{\mu}$ $q^2=0$

SCET Lagrangian

$$\mathcal{L}_{c} = \bar{\xi}_{n} \left\{ in \cdot D_{c} + i \!\!\!\!/ D_{c}^{\perp} \frac{1}{i\bar{n} \cdot D_{c}} i \!\!\!\!/ D_{c}^{\perp} + \underbrace{gn \cdot A_{s}} \right\} \frac{\bar{n}}{2} \xi_{n}$$

$$\mathcal{L}_s = \bar{\psi}_s \ i \! D_s \psi_s$$

- Collinear sector: QCD in boosted frame
- Soft sector: QCD
- Coupled through a single term

Symmetries & Properties

- Separate <u>collinear</u> and <u>soft</u> gauge symmetries
 - Powerful restriction on the form of operators allowed
 - Soft fields act as a background field to collinear fields
 - Any gauge symmetry connecting soft to collinear introduces a large scale
- Factorization of hard scale, Q, automatic
- Factorization of soft and collinear through field redefinition
- ullet Global U(1) helicity spin symmetry
- Reparameterization invariance which is a consequence of Lorentz invariance of QCD: Relates operators

Factorization

Example: $b \rightarrow u + \ell \bar{\nu}$

Integrate out the W boson to obtain Fermi theory

Integrate out the b-qaurk mass: HQET + SCET

$$\bar{\psi}_u \Gamma \psi_b \bar{\psi}_\ell \Gamma \psi_\nu \longrightarrow H_b(1/m_b) \times \bar{\xi}_n \Gamma h_v \bar{\psi}_\ell \Gamma \psi_\nu ???$$

Example: $b \rightarrow u + \ell \bar{\nu}$

- There is a problem!
 - Recal: separate <u>collinear</u> and <u>soft</u> gauge symmetries in SCET

Soft: both $\bar{\xi}_n$ and h_v transform in such a way that

$$\bar{\xi}_n \Gamma h_v \bar{\psi}_\ell \Gamma \psi_\nu \longrightarrow \bar{\xi}_n \Gamma h_v \bar{\psi}_\ell \Gamma \psi_\nu$$
 Gauge Invariant

Collinear: only $\bar{\xi}_n$ transforms $\bar{\xi}_n \Gamma h_v \bar{\psi}_\ell \Gamma \psi_\nu$ Gauge Invariant

What's missing?!?!?!

Collinear W =
$$P \exp \left(ig \int_{-\infty}^{y} ds \, \bar{n} \cdot A_n(s\bar{n}^{\mu})\right)$$

Collinear Wilson Line

Perturbative origin of the collinear Wilson line

• Leading order in α_s

Higher orders

$$\bar{\xi}_n W \Gamma h_v \bar{\psi}_\ell \Gamma \psi_\nu$$

Factorization

• Hard factorization:

$$H_{ew}(1/m_W)H_b(1/m_b)\bar{\xi}_nW\Gamma h_v\bar{\psi}_\ell\Gamma\psi_\nu$$

- Collinear/Soft factorization:
 - Decouple Soft from Collinear in the Lagrangian
 - 1) Soft Wilson Line $Y(x) = \text{Pexp}\left(ig \int_{-\infty}^{x} ds \ n \cdot A_s(ns)\right)$
 - 2) Field Redefinition $\xi_n(x) = Y(x)\xi_n^{(0)}(x)$

$$\mathcal{L}_c \to \bar{\xi}_n \left\{ in \cdot D_c + i \!\!\!\!/ D_c^\perp \frac{1}{i\bar{n} \cdot D_c} i \!\!\!\!/ D_c^\perp \right\} \frac{\bar{n}}{2} \xi_n$$

• Factored Vertex: $\bar{\xi}_n W \Gamma Y^{\dagger} h_v \bar{\psi}_{\ell} \Gamma \psi_{\nu}$

Recap

What have we learned:

- SCET: EFT of collinear d.o.f. coupled to soft d.o.f.
 - Powerful gauge symmetries constrain operators
 - Decoupling via field redefinition

What is it good for?

- SCET is useful for understanding:
 - Factorization: Obtained from field redefinition and simple algebraic manipulations
 - Summation of Logarithms at the edges of phase space: Obtained from Renormalization Group Equations (RGEs)
 - Systematic Power Corrections in λ : Turn the crank

Applications

Color suppressed $B \to D\pi$ decays

Color-Suppressed

Mantry, Pirjol, Stewart

"Tree"

"Exchange"

$$\bar{B}^0 \rightarrow D^+\pi^-$$

 $B^- \rightarrow D^0\pi^-$

$$B^- \to D^0 \pi^-$$

 $\bar{B}^0 \to D^0 \pi^0$

$$\bar{B}^0 \to D^+\pi^-$$

 $\bar{B}^0 \to D^0\pi^0$

Observed 2001

$$N_c^0$$

$$\frac{1}{N_c}$$

$$\frac{1}{N_c}$$

(Cleo, Belle, Babar)

Type	Decay	$Br(10^{-3})$	Decay	$Br(10^{-3})$
I	$ar{B}^0 o D^+\pi^-$	2.68 ± 0.29	$ar{B}^0 o D^{*+}\pi^-$	2.76 ± 0.21
III	$B^- o D^0 \pi^-$	4.97 ± 0.38	$B^- o D^{*0} \pi^-$	4.6 ± 0.4
II	$ar{B}^0 o D^0 \pi^0$	0.29 ± 0.03	$ar{B}^0 o D^{*0} \pi^0$	0.26 ± 0.05
I	$ar{B}^0 o D^+ ho^-$	7.8 ± 1.4	$ar{B}^0 o D^{*+} ho^-$	6.8 ± 1.0
III	$B^- \to D^0 \rho^-$	13.4 ± 1.8	$B^- o D^{*0} ho^-$	9.8 ± 1.8
II	$ar{B}^0 o D^0 ho^0$	0.29 ± 0.11	$ar{B}^0 o D^{*0} ho^0$	< 0.56

Color-Suppressed decays are indeed suppressed

But

Large N_c is not very predictive

• How about using SCET & HQET?

Color Suppressed Decays in SCET

Possible to derive a factorization formula in SCET

SCET operators are power suppressed in addition to being color

suppressed

 $\lambda \sim \frac{\Lambda_{\rm QCD}}{E_{\pi}} \sim 0.2$

$$A_{00}^{D^{(*)}} = N_0^{(*)} \int dx \, dz \, dk_1^+ dk_2^+ T^{(i)}(z) J^{(i)}(z, x, k_1^+, k_2^+) S^{(i)}(k_1^+, k_2^+) \phi_M(x)$$

$$+A_{\text{long}}^{D^{(*)}M}$$

$$Q^2 \gg Q\Lambda \gg \Lambda^2$$

• New non-perturbative function: $S^{(i)}(k_1^+, k_2^+)$

Color Suppressed Decays in SCET

- $S^{(i)}(k_1^+,k_2^+) = \langle D^{(*)}|O_s|B\rangle$ is the lightcone distribution function for the spectator quarks in the B and D
- It is universal for a particular set of directions $\{v, v', n\}$
 - ullet Will be the same for D and D^*
- It is a complex function: large strong phases are natural

Comparison to Date

- ullet Universality for D and D^*
 - Branching ratio

$$Br(D^0\pi^0) = (0.29 \pm 0.03) \times 10^{-3}$$

 $Br(D^{*0}\pi^0) = (0.26 \pm 0.05) \times 10^{-3}$

Strong Phase

$$\delta(D\pi) = 30.4 \pm 4.8^{\circ}$$

 $\delta(D^*\pi) = 31.0 \pm 5.0^{\circ}$

Prediction

$$r^{\rho}_{00} \ = \ \frac{A(\bar{B}^0 \to D^{*0} \rho^0)}{A(\bar{B}^0 \to D^0 \rho^0)} = 1$$

Can explain data

$$|r^{D\pi}| = \frac{|A(\bar{B}^0 \to D^+\pi^-)|}{|A(B^- \to D^0\pi^-)|} = 0.77 \pm 0.05, \qquad |r^{D\rho}| = 0.80 \pm 0.09$$

SCET Predicts
$$r^{DM}=1-\frac{16\pi\alpha_s m_D}{9(m_B+m_D)} \frac{\langle x^{-1}\rangle_M}{\xi(w_{max})} \frac{s_{\text{eff}}}{E_M}$$

Natural sized parameter fits the data: $s_{\rm eff} \simeq (430\,{\rm MeV})e^{i44^{\circ}}$

C.W. Bauer, SF, C.W. Chiang, A. Leibovich, I. Low, Phys. Rev. D64:114014,2001 **SF** & A. Leibovich, Phys.Rev.D67:074035,2003 **SF** & A. Leibovich, Phys.Rev.D70:094016,2004

Short-distance process

$$z \equiv x_{\gamma} \equiv 2E_{\gamma}/M_{\Upsilon}$$

Next-to-leading order calculation:

M. Kramer, Phys. Rev. D60, 111503 (1999)

Use SCET in the endpoint region: $z \equiv x_{\gamma} \geq 0.7$

Color-Octet Contribution:

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dX_{\gamma}} = \int d\xi \, S(\xi, \mu) J(\xi - X_{\gamma}, \mu)$$

Color-Singlet Contribution:

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dX_{\gamma}} = \Theta(M_{\Upsilon} - 2X_{\gamma}m_b) \frac{8X_{\gamma}}{9} J_1(X_{\gamma})$$

Comparison to CLEO data:

$$B \rightarrow \pi + \ell \bar{\nu}$$

Factorization awry

SCET_I gives a factorized form
 Recall SCET_I is appropriate for energetic jets

$$f(E) = \int dz \, T(z, E) \, \zeta_J^{BM}(z, E) + C(E) \, \zeta^{BM}(E)$$

Simply further using SCET_{II}

$$\zeta_J^{BM}(z) = f_M f_B \int_0^1 dx \int_0^\infty dk^+ J(z, x, k^+, E) \phi_M(x) \phi_B(k^+)$$

 $\zeta^{BM}=?$ Endpoint divergences prevent further simplification

Summary & Conclusions

- Flavor of Soft Collinear Effective Theory: light-like particles interacting with a soft background
 - Derive factorization
 - Sum logarithms
 - Systematically treat power corrections
- Scope of applications is large
 - ullet Color-suppressed $B \to D\pi$ decays
 - Radiative decays of the Υ
- Mystery: factorization of soft form-factor in $B \to \pi + \ell \bar{\nu}$
- Direction: control of non-perturbative physics in hadronic collisions
- Only scratched the surface: so much left to do...